algebraisch abgeschlossen
- algebraisch abgeschlossen
-
Eigenschaft eines
Körpers K, wenn jede
algebraische Gleichung mit Koeffizienten aus
K eine Lösung besitzt, die selbst
Element aus
K ist. Jedes
algebraische Element über einen algebraisch abgeschlossenen Körper
K gehört also bereits zu
K. Die Körper der rationalen und der reellen Zahlen sind nicht algebraisch abgeschlossen, da z. B. die Gleichungen
x2 — 2 = 0 und
x2 + 1 = 0 keine rationalen beziehungsweise reellen Zahlen als
Lösungen haben. In einem algebraisch abgeschlossenen Körper lässt sich jedes
Polynom mit Koeffizienten aus dem Körper in Linearfaktoren zerlegen. So gilt z. B. im Körper C der komplexen Zahlen für das Polynom
P (
x ) =
x2 + 1 die Zerlegung
P (
x ) = (
x + i) (
x — i), wobei i = die imaginäre
Einheit ist.
Universal-Lexikon.
2012.
Schlagen Sie auch in anderen Wörterbüchern nach:
Algebraisch abgeschlossen — In der abstrakten Algebra heißt ein Körper K algebraisch abgeschlossen, wenn jedes nicht konstante Polynom in einer Variablen mit Koeffizienten in K eine Nullstelle in K hat. Folgende Eigenschaften sind äquivalent: K ist algebraisch abgeschlossen … Deutsch Wikipedia
Algebraisch — Statue Al Chwarizmis, Al Khwarizmi, Technische Universität Teheran Die Algebra ist eines der grundlegenden Teilgebiete der Mathematik, das sich der Struktur, Relation und der Menge widmet. Im Volksmund wird Algebra häufig als das Rechnen mit… … Deutsch Wikipedia
Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Integrabel — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Kollinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Kopunktal — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Mathematisches Attribut — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia
Multivariat — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia